What foods do desert tortoises need?

Tortoises as unique herbivores

- σ Tortoises eat plants with excess potassium
- σ Unlike mammals and birds, cannot produce concentrated urine
- σ Unlike herbivorous lizards, cannot produce salt secretions from salt glands
- σ How do they do it?

Potassium in Mojave Desert Plants*

*Samples collected in 'wet' years only

K excretion requires N

Nitrogen Intake and Excretion on diets of different potassium %

In choice trials, tortoises avoid K

Potassium vs. water in spring forage

The PEP Index of food quality

 Calculate the net potassium excretion potential for ingested food

- σ Assumptions
 - All H₂O, N, K absorbed and can be excreted
 - Urine of maximal K content (6.5g K/kg H₂O)
 - Urates of maximal K content (K:N ratio of 0.61:1)
 - PEP (g/kg)= $6.5*H_2O$ g/g + 6.1*%N 10*%K

Camissonia boothii

DTNA, Kern Co., Ca

Cryptantha circumscissa

Foraging choice at Ft. Irwin Study Site

Diet selection - foraging juveniles

Fort Irwin Study Site, April 1998 - Oftedal, Hillard & Morafka 2002

Camissonia claviformis

What types of plants are high in PEP?

- Annuals with high protein content associated with high photosynthetic rate (Rubisco)
- σ High photosynthetic rate involves a lot of transpiration (water loss)
- σ Limited K accumulation in vacuoles
- σ Germinate in high rainfall years, as require high soil moisture (water potential)
- σ Most years remain in seed bank

Plants available varies by year

- In drier year, choice is among range of low PEP plants
- σ High PEP plants only in wet years
- σ Even in high rainfall years, high PEP plants can be scarce

Camissonia

Lotus

Cryptantha

Cattle grazing affects high PEP plants

σ In Ivanpah Valley, CA cattle outside exclosures removed high PEP plants, leaving lower PEP plants for tortoises.

Estimated PEP, tortoise diets

Ungrazed Grazed

Early spring 21 11

Late spring 9 2

What has been the long-term effect of historic grazing?

- σ Maximal grazing before 1940s
- σ Effects on perennial plants documented
- σ Changes in abundance of annuals?
 - Repeated "insult" to specific species?
 - Cumulative over time?
 - Changes in seed banks?

Environmental change and invasive species

- σ Soil compaction, wind erosion, pollution, fire
- σ Very high density of invasive exotics
 - FISS 1998 Schismus 72% of biomass, 98% of individual plants
- σ Must account for much of evapotranspiration
- σ Competitive effecton high PEP plants?

Schismus

PEP Shortage Hypothesis

- σ Desert tortoises in much of Mojave Desert experience a chronic shortage of essential nutritional resources (high PEP plants).
- This shortage leaves these populations
 particularly susceptible to disease, mortality,
 and density-dependent population crashes
 - 80% mortality events over a few years

Management actions

- σ Eliminate grazing in high rainfall years to protect high PEP species
- σ Curtail invasive exotic plants
- Restoration/seeding to include high PEP species:

Legumes - Astragalus, Lotus, Lupinus
Evening primroses - Oenothera, Camissonia
Desert dandelion - Malacothrix

Astragalus

Acknowledgments

σ Funding:

- BLM (Las Vegas)
- Clark County (NV) Desert Conservation Plan
- The Nature Conservancy
 - The Christensen Fund

